A Comparison Theorem for Elliptic Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Liouville Theorem for Non Local Elliptic Equations

We prove a Liouville-type theorem for bounded stable solutions v ∈ C(R) of elliptic equations of the type (−∆)v = f(v) in R, where s ∈ (0, 1) and f is any nonnegative function. The operator (−∆) stands for the fractional Laplacian, a pseudo-differential operator of symbol |ξ|.

متن کامل

A Qualitative Phragmèn-Lindelöf Theorem for Fully Nonlinear Elliptic Equations

We establish qualitative results of Phragmèn-Lindelöf type for upper semicontinuous viscosity solutions of fully nonlinear partial differential inequalities of the second order in general unbounded domains of IR.

متن کامل

A Quantitative Comparison Theorem for Nonlinear Equations

In the present paper we establish a quantitative comparison theorem for positive solutions of the following initial value problems 8 < : (p 1 (r)(u)ju 0 j m?2 u 0) 0 + q 1 (r)f(u) = 0 u(0) = u 0 ; u 0 (0) = 0 and 8 < : (p 2 (r)(v)jv 0 j m?2 v 0) 0 + q 2 (r)f(v) = 0 v(0) = v 0 ; v 0 (0) = 0 with r > 0 and m > 1, and also show some applications of the theorem to the non-existence problem of posit...

متن کامل

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1959

ISSN: 0002-9939

DOI: 10.2307/2033594